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Abstract: Background: Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder
that includes involuntary movements, paroxysmal symptoms, and various severities of nonparoxysmal
symptoms.
Objective: To investigate the occurrence of structural brain abnormalities in patients with AHC during clinical
courses.
Methods: Conventional brain magnetic resonance imaging findings and clinical courses were retrospectively
investigated in 14 patients with AHC confirmed by ATP1A3 mutations.
Results: Progressive frontal dominant cerebral, diffuse cerebellar cortical, and severe hippocampal atrophy
were observed in seven patients with irreversible severe motor and intellectual deterioration. All of these
seven patients exhibited status epilepticus and required transient respiratory care. Isolated diffuse cerebellar
cortical atrophy was observed in two adult patients with mild motor regression. Five patients without
apparent deterioration displayed almost normal brain findings.
Conclusions: The areas of atrophy were consistent with the areas of increased expression of the Na+/K+-
ATPase a3 subunit encoded by ATP1A3. Some of paroxysmal and nonparoxysmal neurological symptoms are
considered as related to the areas of brain atrophy.

Introduction
Alternating hemiplegia of childhood (AHC) is a rare neurode-

velopmental disorder, characterized by involuntary movements

(dystonia, choreoathetosis), paroxysmal symptoms (recurrent

flaccid or dystonic hemiplegic episodes, abnormal ocular move-

ments, seizures), and various severities of nonparoxysmal symp-

toms (mental retardation, hypotonia, ataxia).1–3 AHC is caused

by heterozygous Na+/K+-ATPase a3 subunit gene (ATP1A3)

mutations.4–6 The ATP1A3 mutation was originally found in

rapid-onset dystonia-parkinsonism (RDP). AHC and RDP are

thought to be part of a spectrum of ATP1A3-related disorders.7

More recently, a few new phenotypes8–10 have been reported.

Even in AHC, disease severity is variable with some patients

exhibiting severe motor and intellectual deterioration. Brain

magnetic resonance imaging (MRI) usually shows no specific

abnormal findings in patients with AHC, at least early in the

course of the disease.2,3,11 Therefore, it has been postulated that

conventional brain MRI is not useful for diagnosing AHC.

Consequently, there is little knowledge regarding the structural

changes in the brain during the clinical course of this disease.

Some studies reported nonspecific cerebral atrophy, generalized

cortical atrophy, mesial temporal sclerosis, or cerebellar atrophy

in a few cases.2,12,13 However, the relationship between the

clinical course and changes in brain MRI findings has not yet

been established in patients with AHC. The precise cause of

these clinical variabilities in AHC is not yet known except for

partial correlations between the genotype and phenotype as

reported by several groups.14–17

We found progressive localized brain atrophy in some

patients, particularly where severe deterioration was evident.18,19

We investigated Japanese patients with AHC to assess if they

had structural brain abnormalities and to determine the critical
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brain structural differences between a group with irreversible

severe deterioration and one without severe deterioration.

Methods
All participants in this study were diagnosed by the use of pre-

viously described clinical criteria1,2 and by genetic confirmation.

As previously described, genetic analysis confirmed the presence

of ATP1A3 mutations in participants.14 Brain MRI/computed

tomography (CT) findings and information on the clinical

course of disease were retrospectively analyzed. We compared

the neuroradiological findings, clinical courses of disease, and

ATP1A3 genotypes among these patients.

The ethical committee of the National Center of Neurology

and Psychiatry approved this study. Written informed consent

was obtained from the patients’ parents.

Results
Twelve patients from the previous study14 participated in this

study, and two newly diagnosed patients were included.

ATP1A3 mutations and clinical findings of each case are shown

in Table 1.

Seven of 14 patients, aged 14–35 years, had irreversible sev-

ere motor and intellectual deterioration (Cases 1–7: c.2443G>A,
p.Glu815Lys, n = 6 and c.2263G>A, p.Gly755Ser, n = 1).

Among the remaining seven patients (Cases 101–107:
p.Glu815Lys, n = 2; c.2401G>A, p.Asp801Asn, n = 2;

c.2263G>T, p.Gly755Cys, n = 1; c.2423C>T, p.Pro808Leu,

n = 1; and c.2767G>A, p.Asp923Asn, n = 1), aged 6–46 years,

two showed mild motor regression (Cases 101 and 102) and

there was no apparent long-term motor or intellectual deterio-

ration in the other five.

All seven patients with irreversible severe deterioration dis-

played abnormal brain MRI findings including frontal dominant

cerebral, severe hippocampal, and diffuse cerebellar cortical

atrophy (Fig. 1). However, MRI or CT scan at the first exami-

nation during early childhood showed normal brain morphol-

ogy in all of these patients. Therefore, all of these patients

demonstrated progressive brain atrophy. All patients with severe

deterioration had experienced status epilepticus and required

transient respiratory care before the latest MRI study. Three

patients continue to require the use of a respirator (Table 1).

In the remaining seven patients, four patients aged 7–
21 years, with no apparent motor or intellectual deterioration,

displayed no abnormal brain MRI findings. Two adult patients

(Cases 101 and 102), aged 30 and 46 years, respectively, with

mild motor regression, showed diffuse cerebellar cortical atro-

phy (Fig. 2). In a patient with the p.Asp801Asn mutation (Case

104), a right hippocampal swelling was identified just after status

epilepticus was confirmed at 8 years.12 The patient demon-

strated transient regression and recovered within 2 months. He

suffered from temporal lobe epilepsy, and mild right hippocam-

pal sclerosis was detected at 16 years. Two patients experienced

status epilepticus and the frequencies of it were lower than

those in patients with brain atrophy.

Discussion
Patients with AHC can deteriorate either abruptly or gradually

at the motor and intellectual function level.12,14,20 Before this

study, we postulated that there might be nonspecific brain atro-

phy even in patients with AHC who are exhibiting severe dete-

rioration.2,11,12,14,18 After assessing the conventional brain MRI

findings and genotypes of our patients, we have shown for the

first time that similar abnormal findings exist in patients with

severe deterioration. Progressive brain atrophy and cerebellar

atrophy/ataxia have been reported in a spectrum of ATP1A3-

related disorders other than AHC.8–10

Seven patients, six of whom had the p.Glu815Lys mutation,

with irreversible severe motor and intellectual deterioration,

exhibited similar brain abnormalities. All of these seven patients

experienced status epilepticus and required transient respiratory

care. These included frontal dominant cerebral, bilateral severe

hippocampal, and diffuse cerebellar cortical atrophy. Given that

these findings were evident in all seven patients with severe

deterioration, this triad of abnormal findings could be consid-

ered as characteristic abnormal cerebral findings in patients with

AHC exhibiting severe deterioration.

These findings might be related to those observed in severe

hypoxic events or status epilepticus. Typical brain findings in

severe hypoxic events include diffuse cerebral cortical atrophy

(laminar cortical necrosis), particularly in the watershed zone,

and basal ganglia necrosis.21 The hippocampus and cerebellar

Purkinje cells are also vulnerable to hypoxia or status epilepti-

cus.22 Because there is a lack of necrosis in cortical laminae and

basal ganglia, the atrophic areas in severe AHC in this MRI

study are not typical findings compared to general hypoxic

events.

Frontal cerebral, hippocampal, and cerebellar cortical atrophy

could only be related to status epilepticus, because all patients

with severe deterioration exhibited several episodes of status

epilepticus. Frontal cerebral, hippocampal, and cerebellar corti-

cal atrophy can be caused by status epilepticus.22 We observed

transient hippocampal swelling in one case.12 Because status

epilepticus is an energy-consumption event, it is possible that

many neurons in the frontal cortex, hippocampus, and cerebel-

lar cortex could be damaged.

In addition, we observed cerebellar cortical atrophy in two

adult patients with mild motor deterioration and without status

epilepticus. Cerebellar cortical atrophy was demonstrated in the

natural course of AHC. Therefore, we postulate that there is an

additional reason for these similar atrophies occurring in some

patients with AHC. The expression of the Na+/K+-ATPase a3
subunit has been known to occur only in neurons, especially of

the neocortical pyramidal, hippocampal pyramidal, cerebellar

Purkinje cells, and basal ganglia according to studies in

rodents.23–27 The progressive atrophic areas of the brain found

in our study might be related to the amount of the expression

of the Na+/K+-ATPase a3 subunit in neurons. Consequently,

we are relatively sure that these critical atrophic findings are

related to the cause of irreversible deterioration.
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We speculate that neurons expressing the Na+/K+-ATPase

a3 subunit are more susceptible to damage by energy-consum-

ing events such as status epilepticus or fever because of impaired

function of Na+/K+-ATPase. Therefore, these irreversible

atrophic changes in the brain occurred in these areas in only

some patients with AHC exhibiting severe irreversible deterio-

ration. This was particularly true for those with the

p.Glu815Lys mutation, which could be related to neuronal fra-

gility. The precise reason why this mutation is related to the

severe clinical phenotype has not yet been found.14,28

A postmortem neuropathological study in patients with AHC

has not been reported. In the spectrum of abnormal conditions

associated with ATP1A3, there has only been one report on

patients with RDP with comorbid diseases (cerebrovascular and

Alzheimer’s disease).29 This neuropathological study was the

first one conducted on carriers of the ATP1A3 mutation. Neu-

ropathological findings of RDP may be similar to those of

AHC because they could be allelic disorders.1,7,30,31 Anatomical

areas identified as potential targets of the p.Ile758Ser mutation

were the globus pallidus, subthalamic nucleus, red nucleus, infe-

rior olivary nucleus, cerebellar Purkinje and granule cell layers,

and dentate nucleus. Involvement of subcortical white matter

tracts was also evident. Their involvement may have caused an

interruption of the cerebral and cerebellar connections, which

are essential for maintenance of motor control. From our obser-

vations, cerebellar Purkinje and granule cell layers, pyramidal

cells in the frontal cortex, and the hippocampus might be tar-

gets for several ATP1A3 mutations in some patients with AHC.

A special RDP patient who displayed cerebellar atrophy with

ATP1A3 and another gene mutation was recently reported.32

When patients with ATP1A3 mutations have cerebral or cere-

bellar atrophy, there could be any other gene mutations, some

other epigenetic factors, or exogenous factors such as hypoxia.

Most patients with AHC show not only paroxysmal neuro-

logical symptoms but also nonparoxysmal neurological symp-

toms, which include hypotonia, intellectual disabilities,

behavioral abnormalities, ataxia, involuntary movements, and

other symptoms. These nonparoxysmal neurological symptoms

could be caused by functional or organic neuronal abnormalities

because of hyperexcitability or vulnerability of the neurons in

the frontal cerebral cortex, hippocampus, and cerebellar cor-

tex.33 To prevent patients with AHC from not only hemiplegic

Figure 1 Brain MRI of Case 1 at 30 years (A, B, C, and D), Case 5 at 16 years (E, F, G, and H), and Case 6 at 12 years (I, J, K, and L).
(T2–weighted images: axial section, A, E, and I; coronal section, B, C, F, G, J, and K. T1-weighted images: sagittal section, D, H, and L).
Brain MRI shows cerebral atrophy, predominantly in the frontal lobes with enlargement of the lateral ventricles (A, E, and I), bilateral
hippocampal atrophy with enlargement of the inferior horn of the lateral ventricles (B, F, and J), and diffuse cerebellar cortical atrophy
(C, D, G, H, K, and L).
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attacks but also from severe deterioration, a new treatment

method that could improve the function of the mutated Na+/

K+-ATPase a3 subunit is necessary.
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